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Abstract. The single-particle dynamics of a charged test panicle in a background fluid under a 
magnetic field are studied using molecular-dynamics computer simulations. The off-diagonal as 
well as the diagonal components of the velocity autocorrelation functions (VAFS) axe computed. 
The model interaction between the panicles is a hard sphere. The diffusion constants and the 
Hall coefficients are also calculated at vadous densities. These are compared with a theory 
based on the projection-operator formalism. In the low density of a batkground fluid, the VAF 

can be well approximated by M exponential form. The Hall coefficients with respect to the 
volume fnction Y show a peak m u n d  Y = 0.4, reflecting the fact that the ratio D/DE should 
decrease to the value of unity from above where DE is the Enskog diffusion corutant. 

1. Introduction 

The velocity autocorrelation function (VM) and its associated memory function (MF) give 
valuable and detailed information on single-particle dynamics [I]. The VAF is defined by 
CmP(t) = (u,(t)up(O)) where u.(t) is the orth component of the peculiar velocity of a 

 particle, given by ~ ( t )  = w ( t )  - (w) and (. . .) denotes an appropriate ensemble average. 
For dense fluid, two contrasting features are involved in the VAFS. One is a long-time tail 
effect, which predicts that the VAF decays algebraically, leading to the enhancement of self- 
diffusion observed by Alder and co-workers [Z] Cx&) c( t r3f l .  This is quite different from 
the exponential decay expected from the Enskog theory, which assumes so-called 'molecular 
chaos', that is, that the collisions experienced by a molecule in'the fluid are dynamically 
uncorrelated. This algebraic decay is due to the coupling between particle diffusion and 
shear modes in the fluid. The other feature is the back-scattering of a test particle in a 
cage made by the dense-background neighbours, i.e. a collective dynamical effect at short 
times involving many particles, leading to the decrease of self-diffusivity. In dense fluid, 
in principle, the diagonal components of the VAF are expected to have a long-time tail, but 
the amplitude is very small and so its effect can be safely neglected. 

The detailed time dependences of VAFS give sufficient  information^ for the description of 
macroscopic transport phenomena [3]. It is very hard to obtain them analytically due to the 
many-body interactions involved. Molecular-dynamics computer simulation, however, is a 
very powerful method to obtain VAFs [4]. Using this technique, we calculate the components 
of the VAF for a charged test particle in a background fluid under a magnetic field B along the 
z direction. The time integrals of its diagonal components give the self-diffusion constants. 
In addition, the time integrals of its off-diagonal components characterize the dynamical 
correlations among molecules in dense fluids. The off-diagonal components, which are 
normally zero for an isotropic fluid state, become non-vanishing when we turn a magnetic 
field on, from which we have additional important information on the short-time dynamical 
behaviours of a charged particle. 
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2. Simulational methods 

All the particles in our molecular dynamics computer simulation have a mass m and a 
diameter 0. They are assumed to have a hard-sphere interaction. The number of paaicles 
N is taken to be N = 108. To see the bulk properties we have adopted the usual periodic 
boundary conditions. Initially they are positioned to have a facecentred-cubic smcture. 
The'equilibration to the appropriate equilibrium fluid state is obtained after a sufficiently 
long time. The time averages are taken after this equilibration period. 

A number of test particles (we took 10 test particles for efficiency of averaging) have an 
electric charge 4 but there. is no Coulomb interaction between the charged test particles. Thus 
only the charged ones experience an extra Lorentzian force F = qv x B in the presence of 
an external field B along the z axis. For the charged particles, the next collision time with 
other particles should be calculated using Newton's method of root finding [5].  For all the 
other particles, the collision times and the velocity changes are calculated according to the 
usual hard-sphere molecular dynamics [6]. In the case where a magnetic field B is applied, 
the system does not need velocity rescaling to maintain a constant energy because there is 
no work actually involved. While generating the trajectories of particles, we calculated the 
components of the VAFS. Usually, without a magnetic field B, the off-diagonal components 
of Cap@) will be completely zero. 

The total simulational duration is 30 OOO time steps. The total number of collisions is 
over 70 000 at volume fraction q = 0.5. In calculating correlation functions, velocities of 
test particles are stored at intervals of every five steps so the number of time origins is at 
least 6000. Since there are 10 such test particles, we averaged over these trajectories. 

All the simulational values are expressed in reduced units with mass in units of m, length 
in units of U and energy in units of E, the Lennard-Jones potential minimum parameter. 
The relative error of the simulated results is typically within 3%. 

3. Simulational results aud discussions 

Consider a test particle in a system in vacuum, where the magnetic field B along the z 
direction is applied. Let us assume at time t = 0 that we have u,(O) = -Rocsin$, 
~ ~ ( 0 )  = Roc cos 4 where. R is the cyclotron radius, o, = q B f m  the cyclotron frequency 
and 4 an angle measured anticlockwise from the x axis. At a later time f we have 
ux( t )  = -Rw,sin(o,t + 4), U,@) = Ro,cos(w,t + 4). uz(t)  = ~ ~ ( 0 ) .  Thus the VAFS 
can be simply written 

cz.r(t) = cyy(t) = (ux(t)'-'z(O)) = (kBT/m)cOs(oct) 
C x y W  = - C y x ( t )  = (vy(t)vx(O)) = (k BT/m) Sh(OJ,t) 

(1) 

where 
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Thus, in vacuum, we have 

9, = Dyy = Oxy = DYL = Dzz = 0 
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Figure 1. The diffusion consmts at vol- 
ume fraction v = 0.1. The solid lines 
represent Ihc lheoretid results. The x 

symbols represent the simulational re- 
sults. (a) Diagonal componenl D,. (%). 
(b)  Off-diagonal component D x y ( a ) .  

DZL +. 00. (3) 
This results from the fact that the charged particle is bound to move in a spiral curve about 
the B-field axis. However, with the background fluid present, the test charged particle 
experiences some collisions and thus loses its memory to give a finite value of Dz, and also 
non-zero values of D,,, Dyy, Dxy and Dyx. In the low-density range of background fluid, 
if we assume the VAF to be 

C,(i) = C,,(t) = ( k ~ T / m ) e x p ( - - t / r ~ ) c o s o , r  

C&) =.-Cyx(t) = (kBT/m)exp(-t/rE)sino,t 
(4) 

where 7~ is an Enskog relaxation time of the fluid, or equivalently if we assume a delta 
function form of~the first-order MF S(r - r ~ ) ,  then we have 

&(WC) = Dyy(Oo) = ( k ~ T / m ) r ~ / [ 1  f (SEOC)*] 
(5) 

Thus Dxx(oc) decreases monotonically with we. Note also that D!j(oc) has a maximum 
value i ( k B ~ / m ) t E  at wc = 1,k~.  This is clearly confirmed at volume fraction U = 0.1 as 
shown in figure 1. 

D ~ ~ ( o ~ )  = - ~ ~ ~ ( m ~ )  = (w/~)&J,/I~ + ( ~ E ~ J ~ I .  
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At volume fraction v = 0.3, the simulational results still confirm the theoretical proposal 
in (4). As shown in figure 2, however, there is more deviation from the theoretical results. 
With increasing cyclotlon frequency o,, there appears an oscillatory behaviour in C,,(t) at 
U = 0.3, i.e. a backscattering effect as in the dense fluid of v = 0.5 without a field B. This 
reduces the overalI diffisivity of the system. The simulated values of D/DE with respect 
to the cyclotron frequency o, at U = 0.3 in fact show this remarkable behaviour in table 1. 

0.15- 

2 0.1- 

0.05. 

3,o ..,, '6 4 yo i 5  
omega 

(6) NU = 0.3 

~ ~~ 0 
0 5 1 0  75 25 30 5 '  FigureZ. Thesame$infigure lexcept 

omega volume fraction Y = 0.3. 

Table 1. D/DB at volume fraction U = 0.3. 

b,t 0 0.02 0.17 1.74 3.49 6.98 13.95 17.44 
D 0.23 0.21 0.22 0.19 0.17 0.11 0.10 0.07 
D/DE 1.29 1.13 1.19 1.02 0.92 0.63 0.53 0.40 

In the higher-density region, if the vAF is taken as 

C A )  = Cyy(z) = (kBT/m)coso,t(cosbt - (a/b)sinbt)e-"' 

C,,(t) = -Cy&) = (ksT/m) sino,t(cosbt - (a/b)sinbt)e-"' 
(6) 
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where 

and ZD = mD/(kBT), ‘E = mDE/(kBT), or equivalently if the first-order MF is taken as a 
single exponential of the form exp(-t/tM), where ZM is the memory relaxation time of the 
background fluid, then the corresponding diffusion constants are calculated as 

Drx(@d = ( k ~ T / m ) ( a / 2 ) [ ( 1 +  16 - ocl/b)/[u2 + (b - W C ) ~ I  

+ ( 1  + Ib + ocl/b)/[a2 + (b + 0,)~1 
(8) 

DxY(~c) = (kBr/m)$[(- lb  - ocl/b)/[a2 + (b - @d21 + (Ib +@cl/b)/[a2 + (b  + d21 
+ 4a2oC/(a2 + bz)z + o,”(2az - 2b2 +U:)]. 

At volume fiaction U = 0.5, the first minimum TO of C,,(t) occurs at to = 0.13. Thus the 
corresponding memory relaxation time t~ = 0.34 and so the parameters a = 9.2, b = 0.3 
can be obtained. It is interesting to note that at o, = b there are evident kinks. When 
o, c b, the backscattering behaviour of shorr-time dynamics is dominated by the caging 
effect. On the other hand, when w, > b, it is dominated by cyclotron oscillations. 

When w, < b, Dzz(wc) remains nearly constant (see figure 3(a)). In contrast, when 
o, > b, Dxx(wc) increases to a maximum up to eight times that at w, = 0. The maximum 
occnrs around o, = 10. Further increase of o, makes Dxx(oc) vanish as expected. This 
behaviour is quite in contrast to that of (5) for a low-density fluid. 

For the case of non-diagonal diffusivity, Dxy(wc) increases almost linearly up to oc = b.  
Again at o, = b there is a slight but somewhat different slope change. Dxy(oc)  has a 
maximum of 0.07 at o, = 5 .  Again Dxy(oc) vanishes as o, goes to infinity. It seems that 
a certain transition occurs at o, = b (see figure 3(b)). In contrast to the low-density cases, 
at volume fraction U = 0.5 there are, however, significant differences between theory and 
simulation as shown in figure 3(c). Since the short-time values of the VAF are obtained 
rather accurately in simulations, large-o, behaviours for diffusion constants are expected to 
be good. 

The Hall number h is expressed as 171 

h = 1 - k(r;’ - z$)* (9) 

where k is a memory parameter representing the three-point spatial correlation function in 
its explicit form. Note that from (9) h can have exactly the value of one if k is equal to zero 
in which case the test particle’s mass is rather larger than that of a background particle, or 
if D = DE, in which case there is no MF effect as in the Enskog approximation. Thus h 
is usually different from unity due to the dynamic interactions of the test particle with the 
background fluid particles. The Hall coefficient h is calculated at small o, from (9). The 
calculated Hall coefficient with respect to the volume fraction v is shown in figure 4. It 
was expected from the theory [7] that around U = 0.4, h should have a peak, reflecting the 
fact that D/De should cross a DID€ = 1 line downwards, where h should have exactly 
the value of one. 

In the simulation, we did not change the mass of the test particle. It will be interesting 
to see the Brownian-ion limit, but in this limit it is more appropriate to use the Brownian 
dynamics method. 
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Figure 3. (a)  Dsx(o,) at small w, of 
(11). (b) DX&d af small w, of (8). (4 
the diagonal component D,(w,), at volume 
fraction U = 0.5. The solid lines represent the 
theoretid results. 7be I symbols represent the 
simulational results. 
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Figure 4. The Hall conslant h (M) and the ratio D j D g  (A) against volume fraction Y. 

The motion in the x-y plane is quite different from the motion in the x-z plane. The 
motion in the x-z plane is rather similar to the motion without a field B. Fragments 
of circular trajectories appear in the x-y plane. This behaviour is due to the fact that 
between collisions the trajectories follow the motion in the vacuum. Through collisions 
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with background particles these circular trajectories are broken by the colliding partners. 
When the magnetic field is very strong, the test particles are localized and oscillating. This 
is quite similar to the behaviour of the glassy state. 

Finally, to see these effects in molecular fluids in real experiments, we need quite a 
strong magnetic field of the order of magnitude at least lo4 T, far higher than those obtainable 
in today’s technology. However, in computer simulations we can easily access such a field 
by varying the parameters. This is in fact one of the great advantages of the simulational 
methods. Furthermore, the values of h or Dxy have been measured in electrolyte solutions 
[8] at less than 10 T. There are also some appealing macroscopic theories [9] on the Hall 
effect in ionic solutions. 

4. Conclusion 

The charged test-particle motion under a magnetic field has been studied using molceular- 
dynamics computer simulation. In low background fluid density the diagonal components 
of the VAF can be represented by a superposition of Enskog-type exponential decay and the 
applied cyclotron oscillation. However, in a dense system. the first-order MF can be taken to 
be a simple exponential type. The calculated Hall number h shows a peak around volume 
fraction v = 0.4 at which D / D E  approaches unity from above. For a denser fluid, h sharply 
decreases to zero. At volume fraction v = 0.5, the MF relaxation constant t~ is calculated 
to be around 0.34. Thus our simulational results indicate that they provide a unique measure 
of localization or caging of the charged particle under a magnetic field in the background 
fluid. There is also an anisotropy of diffusion constants, and the off-diagonal component 
D,,(w,) clearly has a non-zero value. However, there is, in fact a large quantitative gap 
between the simulational results and theoretical values in a dense liquid. Hence there should 
follow more elaborate theoretical developments to explain the simulational results. 
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